
                                                         
 

 

 

H2020-ICT-2018-2-825377 

UNICORE 
UNICORE: A Common Code Base and Toolkit for Deployment of 

Applications to Secure and Reliable Virtual Execution Environments 

 

Horizon 2020 - Research and Innovation Framework Programme 

 

D5.1 Deployment plan, requirements and 
business cases 

Due date of deliverable: 29 February 2020 

Actual submission date: 28 February 2020 

 

 

 

 

 

Start date of project 1 January 2019 

Duration 36 months 

Lead contractor for this deliverable Orange Romania 

Version 1.0  

Confidentiality status “Public” 

 
 

© UNICORE Consortium 2019                                                                                        Page 1 of 55  



  
 

 

Abstract 

This deliverable marks the milestone fifth version of the UNICORE Deployment Plan,            

Requirements and Business Cases document. The goal of the EU-funded UNICORE           

project is to develop a common code-base and toolchain that will enable software             

developers to rapidly create secure, portable, scalable, high-performance solutions starting          

from existing applications. Key to this is to compile an application into very lightweight              

virtual machines - known as unikernels - where there is no traditional operating system,              

only the specific bits of operating system functionality that the application needs. The             

resulting unikernels can then be deployed and run on standard high-volume servers or             

cloud computing infrastructure. 

The technology developed by the project will be evaluated in a number of trials, spanning               

several application domains. This document details the target deployment plans for the            

Unikernels, the requirements for each of the use-cases to be tested during the validation              

phase of UNICORE, the associated business models and business cases for each use-case.             

This document details and finishes with a conclusion section. 

Target Audience 

The target audience for this document is the general public interested in UNICORE             

solutions and use-case validations. 

 

 

 

 

 

 

 
 

Page 2 of 55                                                                                     © UNICORE Consortium 2019 



  
 

Disclaimer 

This document contains material, which is the copyright of certain UNICORE consortium            

parties, and may not be reproduced or copied without permission. All UNICORE consortium             

parties have agreed to the full publication of this document. The commercial use of any               

information contained in this document may require a license from the proprietor of that              

information. 

Neither the UNICORE consortium as a whole, nor a certain party of the UNICORE              

consortium warrant that the information contained in this document is capable of use, or that               

use of the information is free from risk, and accept no liability for loss or damage suffered by                  

any person using this information. 

This document does not represent the opinion of the European Community, and the European              

Community is not responsible for any use that might be made of its content. 

Impressum 

Full project title UNICORE: A Common Code Base and Toolkit for 

Deployment of Applications to Secure and Reliable Virtual 

Execution Environments  

Title of the work package WP5 – Unikernels in Practice 

Editor Orange Romania 

Project Coordinator Emil Slusanschi, UPB 

Technical Manager Felipe Huici, NEC 

Copyright notice © 2019 Participants in project UNICORE 

  

 

 

 

 

  
© UNICORE Consortium 2019                                                                                      Page 3 of 55 



  
 

Executive Summary  
The Work Package 5 within the UNICORE project is responsible for the validation of              

UNICORE krafting solutions in specific application areas. This Report contains the           

Deployment Plan, Requirements and Business Cases related to the selected UNICORE use            

cases initially identified in deliverable D2.1 and in DoA.. This is the first version of the                

UNICORE deployment plan which describes four deployment targets and the corresponding           

use-cases initially specified in deliverables D2.1 and D2.3. In this report we briefly recall the               

UNICORE use-cases, describe in detail the infrastructure required for their deployment, the            

related and specific UNIKERNEL requirements and the Business case and Business Models. 

UNICORE provisions four different deployment targets consisting of seven use-cases. The           

deployments targets are Serverless computing, Network Function Virtualization (NFV),         

Home Automation and Smart Contracts. The NFV targets additional four specific use-cases            

in order to validate the use of unikernels across different scenarios such as Universal              

Consumer’s Premise Equipment, run by NEC; Broadband Network Gateway for Wired           

Internet Access, run by ORO; Wireless 5G virtual Radio Access Network NFV Clusters, run              

by Accelleran; and Customer Premise Equipment NFV run by OA.  

This document complements the use-cases description presented in Deliverables 2.1 and           

D2.3 with detailed information on requirements for UNIKERNEL, including the capabilities           

needed for the deployment in the test-beds, the management plane service requirements,            

network libraries and protocols that UNIKERNEL should support, API requirements and           

finally, scalability, security and isolation requirements. Orchestration and Management         

Integration details are also provided in terms of requirements for service instantiation and             

resource configuration on the deployed infrastructure as well as the tools and methods to be               

used for orchestration capabilities.  

The business case and business model description for the use-cases, where applicable,            

provides a high-level overview of the implementation of UNIKERNELS needed to provide            

customer services, the specific optimization compared to current implementation and the way            

forward towards possible applications stemming from using UNIKERNELS.  

The reports also presents an initial deployment plan strategy which refers to various best              

practices and State-of-The-Art on deployments methodologies in comparison with         

UNIKERNEL deployments.  

 
 

Page 4 of 55                                                                                     © UNICORE Consortium 2019 



  
 

Through this deliverable we provide an initial deployment plan for UNIKERNELS, the            

strategies and timeline of activities and a way forward as this report can be referenced in the                 

following deliverables of Work Package 5.  

 

List of Authors  

Authors 

 

 

 

 

 

 

Participants 

Work Package 

Security 

Nature 

Version 

Total number of pages 

Ioan Constantin (ORO), Marius Iordache (ORO), Cristian 

Patachia (ORO) Franck Messaoudi (OA), Thierry Masson 

(OA) , Stephen Parker (XLRN), Jesús Martín (CSUC), Xavier 

Peralta (CSUC), Matteo Pardi (NXW), Gino Carrozzo (NXW), 

Cristina Basescu (EPFL), Gaylor Bosson (EPFL), Felipe Huici 

(NEC), Radu Stoenescu (CNW), Razvan Deaconescu (UPB), 

Emil Slusanschi (UPB) 

ORO, CSUC, OA, NXW, EPFL, NEC, UPB, CNW 

WP5 - Unikernels in practice 

Public 

R 

1.0 

55 

  

 

 

 

 

 

 

 

 

 

 

  
© UNICORE Consortium 2019                                                                                      Page 5 of 55 



  
 

Contents 

Executive Summary 

List of Authors 

List of Figures 

Acronyms 

4 

5 

8 

9 

 

1       Introduction 14 

2       Deployment Plan 15 

3       Deployment Targets 18 

3.1    Serverless Computing 18 

3.1.1     Description of the Use-Case 18 

3.1.2     Description of the Infrastructure 18 

3.1.3     UNIKERNEL Requirements 21 

3.1.4     Orchestration and Management Integration Requirements 22 

3.1.5     Description of Business Case 22 

3.2     Network Function Virtualization 22 

3.2.1    Broadband Network Gateway for wired Internet Access 22 

3.2.1.1     Description of the Use-Cases 22 

3.2.1.2     Description of the Infrastructure 24 

3.2.1.3     UNIKERNEL Requirements 27 

3.2.1.4     Orchestration and Management Integration Requirements 29 

3.2.1.5     Description of Business Case 29 

3.2.2     Wireless 5G vRAN NFV Clusters 31 

3.2.2.1     Description of the Use-Case 31 

3.2.2.2     Description of the Infrastructure 33 

 
 

Page 6 of 55                                                                                     © UNICORE Consortium 2019 



  
 

3.2.2.3     UNIKERNEL Requirements 34 

3.2.2.4     Orchestration and Management Integration Requirements 36 

3.2.2.5     Description of Business Case 36 

 3.2.3     EKINOPS NFV 36 

3.2.3.1     Description of the Use-Cases 36 

3.2.3.2     Description of the Infrastructure 39 

3.2.3.3     UNIKERNEL Requirements 40 

3.2.3.4     Orchestration and Management Integration Requirements 42 

3.2.3.5     Description of Business Case 42 

3.3    Home Automation and IoT 43 

3.3.1    Description of the Use-Case 43 

3.3.2    Description of the Infrastructure 46 

3.3.3    UNIKERNEL Requirements 48 

3.3.4    Orchestration and Management Integration Requirements 50 

3.3.5    Description of Business Case 50 

3.4    Smart Contracts 50 

3.4.1    Description of the Use-Case 51 

3.4.2    Description of the Infrastructure 52 

3.4.3    UNIKERNEL Requirements 52 

3.4.4    Orchestration and Management Integration Requirements 53 

3.4.5    Description of Business Case 53 

4     Conclusions 54 

5     References 55 

 
 

 

  
© UNICORE Consortium 2019                                                                                      Page 7 of 55 



  
 

List of Figures 
 

3.1.1 

3.1.2 

 

3.2.1 

3.2.2 

3.2.3 

3.2.4 

3.2.5 

3.2.6 

3.2.7 

3.2.8 

3.2.9 

3.2.10 

3.2.11 

3.2.12 

 

3.3.1 

3.3.2 

3.3.3 

3.3.4 

3.3.5 

3.3.6 

3.3.7 

Current architecture for CSUC use-case 

Possible final architecture for CSUC use-case 

 

ORO BNG Use Case Scenario 

ORO BNG Implementation Evolution 

Legacy ORO BNG Architecture 

ORO BNG Control and User Plane Separation 

Virtualized ORO BNG Deployment Scenario 

ORO BNG Transformation Apps for UNIKERNEL Implementation 

FTTH/FTTB Delivery Model of Orange Romania 

Outline of XLRNs dRAX Architecture 

3GPP Reference 5G Network Architecture 

(Simplified) view of the Ekinops’ SDWAN Solution 

Ekinops’ vCPE architecture design 

Ekinops’ SDWAN Test Bed Infrastructure 

 

Symphony Building Blocks 

Testing stages 

Smart Home time plan 

Ground floor installation layout 

First Floor Installation Layout 

External Area Installation Layout 

Human/Machine Interaction User Interfaces 

19 

20 

 

23 

24 

25 

26 

26 

27 

30 

32 

34 

37 

39 

40 

 

44 

45 

46 

46 

47 

47 

48 

 

 

 

 
 

Page 8 of 55                                                                                     © UNICORE Consortium 2019 



  
 

Acronyms 
 
5GC 5G Core Network 

ABI Application Binary Interface 

API Application Programming Interface 

AMQP Advanced Message Queuing Protocol 

ARM Advanced RISC Machines 

ASLR Address Space Layout Randomisation 

AWS Amazon Web Services 

BPF Berkeley Packet Filter 

BMS Building Management System 

BNG Broadband Network Gateway 

CLI Command Line Interface 

CPE Customer Premises Equipment 

CPU Central Processing Unit 

CNW Correct Networks SRL 

CSUC Consorci de Serveis Universitaris de Catalunya 

CU Central Unit 

CVE Common Vulnerabilities and Exposures 

DALI Digital Addressable Lighting Interface 

DEDIS Decentralized and Distributed Systems 

DHCP Dynamic Host Configuration Protocol 

  
© UNICORE Consortium 2019                                                                                      Page 9 of 55 



  
 

DMA Direct Memory Access 

DOA Description of Action 

DOS Denial Of Service 

DPDK Data Plane Development Kit 

dRIC dRAX RAN Intelligent Controller 

DSL Digital Subscriber Line 

DU Distributed Unit 

DUT Device Under Test 

EAD Ethernet Access Devices 

eBPF extended Berkeley Packet Filter 

ELF Executable and Linkable Format 

EPC Evolved Packet Core 

EPFL  Ecole Polytechnique Fédérale de Lausanne 

EVM Ethereum Virtual Machine 

FPU Floating Point Unit 

GDOI Group Domain of Interpretation 

GPU Graphics Processing Unit 

HA High Availability 

HAL Hardware Abstraction Layer 

HVAC Heating, Ventilation, and Air Conditioning 

IoT Internet of Things 

IP Internet Protocol 

 
 

Page 10 of 55                                                                                     © UNICORE Consortium 2019 



  
 

IPSec IP security 

ISP Internet Service Provider 

KPI Key Performance Indicator 

KVM Kernel-based Virtual Machine 

LTE Long Term Evolution 

MANO Management and Orchestration 

MCAPI Multicore Communications API 

MPLS Multiprotocol Label Switching 

MSAR Multi-Service Access Routers 

MQTT Message Queuing Telemetry Transport 

NAT Network Address Translation 

NATS Neural Autonomic Transport System 

NIC Network Interface Card 

NF Network Function 

NFV Network Function Virtualisation 

OCI Open Containers Initiative 

ODM Original Design Manufacturer 

ONAP Open Network Automation Protocol 

ONVIF Open Network Video Interface Forum 

OPC Open Platform Communications 

OPC-UA OPC Unified Architecture 

OS Operating System 

  
© UNICORE Consortium 2019                                                                                      Page 11 of 55 



  
 

PBFT Practical Byzantine Fault Tolerance 

pCPE physical CPE 

PLR Packet Loss Ratio 

PNF Physical Network Function 

POS Performance Oriented Scheduler 

PTZ Pan Tilt Zoom 

QoS Quality of Service 

RAM Random Access Memory 

RAN Radio Access Network 

Redis REmote Dictionary Server 

REST REpresentational State Transfer 

RGB Red Green Blue 

RRD Round Robin Database 

RRU Remote Radio Unit 

RTU Remote Terminal Unit 

S3 Simple Storage Service 

SCF Smart Contract File 

SCTP Stream Control Transmission Protocol 

SDN Software Defined Networking 

SDWAN Software Defined Networking in a Wide Area Network 

SIP Session Initiation Protocol 

SNMP Simple Network Management Protocol 

 
 

Page 12 of 55                                                                                     © UNICORE Consortium 2019 



  
 

SQL Structured Query Language 

TCP Transmission Control Protocol 

TRL Technology Readiness Level 

UDP User Datagram Protocol 

UE User Equipment 

UI User Interface 

UIT Universitat Internacional de Catalunya 

vCPE virtual CPE 

vCPU virtual CPU 

VM Virtual Machine 

VMM Virtual Machine Monitor 

VoD Video on Demand 

VoIP Voice Over Internet Protocol 

VNF Virtual Network Function 

vRAN virtualized Radio Access Network 

XDP eXpressive Data Path 

 

 

 

 

  
© UNICORE Consortium 2019                                                                                      Page 13 of 55 



  
 

1       Introduction  
This document is the deliverable D5.1 of the UNICORE project. Its purpose is to provide a                

detailed deployment plan for the four different deployment targets in UNICORE, including            

the high level description of each deployment target and the corresponding use-cases, the             

infrastructure description, the unikernel requirements for each particular use-case and any           

orchestration and management integration requirements. Further, this report will provide an           

analysis and description of the business cases for each of the use cases, pointing out what the                 

business models will be. 

This report is structured in four chapters, which are: 

Chapter 1 provides an introduction to the rest of the document. 

Chapter 2 offers a description of the deployment plan and business model for UNICORE,              

including an analysis of the tools, methodologies and best practices used for software             

deployment, applicable to UNICORE. 

Chapter 3 provides the description of the four deployment targets including infrastructure            

description, unikernel and orchestration and management requirements and business case          

descriptions, where applicable.  

Chapter 4 summarizes what has been achieved in this document, identifying shortcomings            

and proposing possible solutions for the future. 

 

 

 

 

 

 

 

 
 

Page 14 of 55                                                                                     © UNICORE Consortium 2019 



  
 

2       Deployment Plan  
The deployment of software artifacts consists of a set of activities that make the whole               

system available validated for use. Starting from the development phase, it is common             

practice to pass through a refinement of the implementation, testing, integration and when             

everything is completed, the final application software is packed in a final deliverable and              

installed on the target. 

Every software system is unique, therefore the precise processes or procedures within each             

activity can hardly be defined in general terms. In fact, how to deploy software and test it in                  

target conditions really depends on the scale it has to operate at, the type of hosting servers in                  

use, the type of application to be deployed, the level of security required, the infrastructure in                

use, etc. Therefore, deployment should be interpreted as a general process that has to be               

customized according to specific requirements or characteristics. 

The UNICORE project is no exception to this. Each use case has its own targets and rules and                  

will follow a specific procedure of deployment, according to its needs. Nevertheless, because             

the process starts from the development and all of the targets relies on Unikraft framework,               

some common path can be identified. 

Software repository. The Unikraft project resides on GitHub's public repositories at           

https://github.com/unikraft. GitHub is a Git repository-hosting environment that includes all          

of the distributed revision control and source code management (SCM) functionality of Git,             

as well as adding its own features. This allows the use case owners (and developers) to have a                  

single and verified source, where to get the foundations to build their applications. 

Testing. Integration testing and functional testing give the software developer a chance to             

catch a bug before it reaches production. This has a huge importance, because frees people               

from the worry of breaking something on the production servers. Secondly, it protects the              

software every time an update is released. This has much importance in Unicore, because it               

directly reflects on the updates that are constantly added to the Unikraft framework. 

CI / CD. Continuous Integration is a practice in modern software that focuses on making               

preparing a release easier. CD, here mentioned as an acronym, can either mean Continuous              

Delivery or Continuous Deployment, and while those two practices have a lot in common,              

they also have a significant difference that can have critical consequences for a business[1].  

  
© UNICORE Consortium 2019                                                                                      Page 15 of 55 

https://github.com/unikraft


  
 

Continuous Delivery focuses an organization on building a streamlined, automated software           

release process. The core of this release process is an iterative feedback loop. It revolves               

around delivery of software to the end user as quickly as possible, learning from their               

hands-on experience, and then incorporating that feedback into the next release. This means             

that on top of having automated your testing, you also have automated your release process               

and you can then deploy your application at any point of time by clicking on a button.                 

Continuous Deployment goes one step further, automatically releasing every change that           

passes all stages of your production pipeline directly to the final destination. There's no              

human intervention, and only a failed test will prevent a new change to be deployed to                

production. 

 

As already stated before, CI / CD processes can hardly be defined the same for all of the use                   

cases, although some of them can be applied to the Unikraft framework releases. However,              

due to the experimental nature of the artefacts, Continuous Delivery is probably the highest              

level of automation that the project can target, and after this a simple script (manually               

triggered) might update the production deployment.  

 

For UNICORE, mechanisms of Continuous integration based on Jenkins software are being            

configured for the parts related to core UNIKRAFT elements. Extension of Jenkins            

functionalities to some use cases is also under consideration, above all in cases of free open                

source software to be built and used in the deployment scenarios. Due to the different nature                

of the target deployment scenarios for the four target use areas of validation, we plan to use                 

no o automation for delivery, hence leaving to the use case tester to deploy the krafted                

unikernels in the target platforms for test.  

As a general plan cross use case targets, the UNICORE consortium is following a phased               

approach linked to the major milestones and deliverables planned for the project. 

● Phase-0 (M6-M12): initial experiences with UNIKRAFT. During this initial phase          

the various use case teams have experimented UNIKRAFT to port initial functions.            

The aim of this phase is to make initial hands-on experience with UNIKRAFT in              

order to familiarize with the krafting tool, the procedures to identify and resolve             

software dependencies with a more focused scope deriving from the use case            

scenarios. 

 
 

Page 16 of 55                                                                                     © UNICORE Consortium 2019 



  
 

● Phase-1 (M13-M14): use case deployment planning, which has led to the delivery             

of this document. 

● Phase-2 (M15-M20): Porting and deployment of core use case functions to           

unikernels. This phase will select initial core functions for each use case and will              

implement krafting via UNIKRAFT and testing of the resulting application binaries. 

● Phase-3 (M21-M36): Completion of porting and deployment of core use case           

functions with unikernels. This phase will complete the porting and validation of the             

various functions identified for each use case which might benefit from being            

implemented via unikernels. 

The upcoming Chapter 3 details each of UNICORE’s use-cases, the UNIKERNEL and            

integration requirements, and the corresponding business cases for each considered scenario. 

 

 

 

 

 

 

 

 

 

 

 
 

  
© UNICORE Consortium 2019                                                                                      Page 17 of 55 



  
 

3       Deployment Targets   

3.1 Serverless Computing 

3.1.1 Description of the Use-Case 

CSUC has worked for more than 20 years hosting, developing and implementing different             

digital repositories focused on digital content for the University Community, in concrete this             

kind of repositories is called institutional repositories, adding different services to these            

repositories. Each institutional repository stores their own documentation related to teaching,           

research and institutional documents: PhDs, final year projects, teaching material used in            

different subjects, etc. Concrete examples in this scenario are two university repositories:            

IRTA PubPro[2] and UIC Open Access Archive[3]. 

These institutional repositories are based on an open source software called DSpace[4], that             

provides tools for the management of digital collections and it is adapted to the norms,               

standards, and good international practices for this kind of digital material. 

The different institutional repository admins can upload documents in these repositories that            

can consist in: pdfs, videos, images, etc. 

In our Use-Case we are focusing on the digital images conversion that are uploaded to               

repositories, thus they have large size and in order to visualize them is mandatory to convert                

them to a light-weight image. 

3.1.2          Description of the Infrastructure 

The CSUC current infrastructure is formed by a cluster of kubernetes for each repository.              

Each repository cluster is managed by Rancher, a PaaS platform which allows to threat the               

kubernetes clusters as a whole. The figure 3.1.1 shows the architecture of the different              

components to run a repository which consists mainly in: 

● Bastion host which secures the internal work 

● 3 Rancher Master nodes in High Availability 

● 3 Kubernetes Master Nodes in High Availability 

● Kubernetes worker nodes (Repository) 

 
 

Page 18 of 55                                                                                     © UNICORE Consortium 2019 



  
 

● Media Converter 

 

 
Figure 3.1.1: Current architecture 

 
The most important component in this use case is the media converter. There is a unique                

media converter for each repository. This media converter is a virtual machine running over              

the KVM hypervisor and managed by OpenNebula. The purpose of the media converter is to               

change the characteristics of the files the repository admin uploads to the repository. Thus,              

for example applies to an image repository which needs to resize images in order to make                

their visualization easier, so, the media converter runs a cron job that checks every night if                

there are any images to convert, then starts to run a script to resize and upload them to the                   

repository.  

  
© UNICORE Consortium 2019                                                                                      Page 19 of 55 



  
 

Following the previous scenario CSUC use case will focus on changing how the images that               

have to be uploaded to the repository are converted. Thus, the use case aims to change the                 

media converter virtual machine by an unikernel serverless solution. The new proposed            

scenario based on unikernels is shown at figure 3.1.2. This new solution will change the               

image conversion behaviour and add some components in order to automate the task. The              

main idea is to upload the images to be converted to an S3 bucket (input), once the image is                   

uploaded a system will notice and will call the orchestrator to instantiate a function as a                

service based on unikernels which will take the image, convert it upload it to another S3                

bucket (output). Each unikernel will be executed over a KVM hypervisor to ensure the              

isolation between them and acting as if they were virtual machines and it will be running one                 

unikernel per image. 

 

 
Figure 3.1.2: Possible final architecture 

 

The queue service will monitor the conversion tasks to be started and also will send this                

information to the orchestrator and will check if the task is done. The orchestrator will               

receive the commands from the queue service to start as many unikernels processes as files               

would be in the input storage backend to convert it. The hypervisor, KVM, will run the                

 
 

Page 20 of 55                                                                                     © UNICORE Consortium 2019 



  
 

unikernels and assure the isolation between them, considering unikernel processes as if they             

were virtual machines. 

3.1.3          UNIKERNEL Requirements 

The target solution has to improve the behavior of virtual machines by leveraging unikernel              

mainly characteristics which are: 

 

● Low deployment time 

● Lifetime limited 

● High number of instances per node 

● Low resources consumption 

● High performance 

 

For the image conversion a script written in Python will be developed using the Pillow library                

and boto3 a python native library to manage the S3-like object storage protocol to upload and                

download the images to be or already converted. 

The Pillow library requirements are the following: 

 

● python3 

● libwebpdemux2 

● python3:any 

● libwebpmux3 

● mime-support 

● zlib1g 

● python3-pil.imagetk 

● python3-tk 

● libc6 

● libgcc1 

● libfreetype6 

● libpng16-16 

● libjpeg8 

● liblcms2-2 

● libjpeg-turbo8 

● libtiff5 

● libjbig0 

● libwebp6 

● liblzma 

 

CSUC use-cases will use all the components developed by unicore toolkit in order to create               

the unikernel image which better fits on the purpose. 

  
© UNICORE Consortium 2019                                                                                      Page 21 of 55 



  
 

The most important components would be the Automatic Build Tool in case we can achieve a                

way to build image on instantiation time, the verification tool and the performance             

optimization to provide more information about how it performs the used image. 

3.1.4          Orchestration and Management Integration Requirements 

Regarding CSUC orchestration requirements the final solution based on unikernels should be            

deployed by Kubernetes or OpenNebula similar at openFaaS. This final solution should be             

run on a x84 architecture. In any case these requirements are independent from the functional               

requirements, so, it won’t affect the use-case. 

3.1.5          Description of Business Case 

The purpose of this use case is to change the behaviour on how CSUC converts the images                 

before uploading them to the different repositories. This new behaviour has to allow to              

manage the images in a lightweight mode leveraging the unikernels performance and also             

changing different actors in the whole workflow in order to accomplish a more automatic              

interaction between all the components. 

3.2  Network Function Virtualization   

3.2.1 Broadband Network Gateway for wired Internet Access   

3.2.1.1 Description of the Use-Cases 

Orange’s target for UNICORE work is determined by the definition of a novel approach to               

the implementation of Broadband Network Gateways (BNGs). Different implementation         

models are considered: 

● An evolution from the current physical monolithic implementation to a virtualized           

monolithic implementation. 

● A further evolution to a virtualized deployment using unikernel VMs.  

The main objective for ORANGE is to define and implement the BNG unikernel application              

in a virtualized environment, within the use-case life cycle approach for service requirements             

analysis, design, system requirements, overall architecture for implementation, including         

 
 

Page 22 of 55                                                                                     © UNICORE Consortium 2019 



  
 

control and management for use case service and infrastructure resources. The technology            

developed should enable the seamless creation and deployment of any unikernel Unicore            

application with due consideration of performance, scalability, security, isolation, efficiency.  

The entire system is based on an efficient NFV, relying on Unicore to develop the BNG                

lightweight network function for improved performance from the end-user perspective and           

efficient resource optimizations from the service-provider perspective. The entire system will           

run on dedicated lightweight VMs, instantiated in an automatic manner and orchestrated on a              

per customer application basis. 

Today’s ORANGE BNG implementation is based on several physical BNGs (Nokia 7750            

hardware), deployed in different locations in the network, in ORANGE Data Centers.            

Customers from different regions are connected to their dedicated BNGs, for clarity, by             

defining a region, Region A, the clients from that specific region will connect to Region A                

BNGs, as shown in figure 3.2.1 

 

             Figure 3.2.1: Orange BNG Use Case Scenario 

Currently, a resilient system is deployed at each site location. This consists of two              

(active/standby) BNGs being deployed for High Availability (HA) purposes. This pair of the             

BNGs supports all traffic from the region, for multiple services (Internet, VoIP, etc). The              

network provides connectivity for different customer applications with a capacity of up to             

1Gbps along with QoS and user monitoring. The entire system is designed to cope with an                

estimated traffic load and number of customers, including specific authentication access and            

service allocation resources. Deployments using this monolithic approach can take up to            

several months, regardless of the number of customers and specific service requirements and             

  
© UNICORE Consortium 2019                                                                                      Page 23 of 55 



  
 

needs. 

 

                                   Figure 3.2.2: BNG Implementation Evolution 

The next phase implementation will consist of replacing the physical BNGs (PNFs) in the              

service provider Data Centers, with virtualized infrastructure in an NFV/VNF deployment           

scenario. This approach of replacing the PNFs with VNFs is primarily designed to improve              

the deployment time and resource utilisation of the BNGs. 

From a service perspective the functionality of both deployment approaches is the same, but              

there are obvious improvements in deployment times and resource usage. However, the            

VNF/NFV approach does leave some questions open regarding VM performance, resource           

utilisation and security. This evolution path is shown in figure 3.2.2 

3.2.1.2 Description of the Infrastructure 

The legacy architecture, as shown in figure 3.2.3 is a compact physical platform which              

enables service delivery, high performance, dense interfaces and high user capacity           

equipment, with comprehensive features and different network functions, using common          

system modules, a network hardware architecture containing control processing modules, I/O           

modules for traffic forwarding programming, RIB APIs, filtering capabilities and media           

adapters modules providing physical interface connectivity. On top of the architecture,           

several features and protocols are supported, such as IP L2/L3 and MPLS features, Segment              

Routing and SDN, control interface, management and configuration interfaces as CLI,           

 
 

Page 24 of 55                                                                                     © UNICORE Consortium 2019 



  
 

OpenFlow, Netconf, YANG models, SNMP, OAM fault and performance operation.  

 

Figure 3.2.3: Legacy BNG Architecture 

The first version of BNGs were based on physical equipment handling all control,             

management and network functions. As mentioned previously, there are several drawbacks to            

this approach, such as cost a resource allocation, the time taken to deploy equipment, poor               

scalability and other general drawbacks of this monolithic solution approach. 

The BNG virtualized architecture using NFV and VNFS, will enable the decoupling of the              

software from the underlying hardware. This allows for the separation of the Control Plane              

(CP) and User Plane (UP). In this scenario, the CP takes responsibility for the user control                

management component and the UP is responsible for policy implementation and data            

forwarding. This virtualized BNG will centralise management, is scalable for the           

management of subscribers and will enable flexible network resource allocation. The           

functional components, as described in Figure 3.2.4, are implemented as Virtual Network            

functions (VNFs) hosted in Network Function Virtualization Infrastructure (NFVI). The          

proposed NFVI model is ETSI MANO NFV. ETSI MANO identifies Service (1), Control (2)              

and Management (3) interfaces and details the interactions between the CP and UP. This              

deployment is shown in figure 3.2.5. 

  
© UNICORE Consortium 2019                                                                                      Page 25 of 55 



  
 

 

Figure 3.2.4 - BNG Control and User Plane Separation 

 

Figure 3.2.5 - Virtualized BNG Deployment Scenario 

A migration to a micro-services architecture facilitates more fine-grained distribution of BNG            

services and allows for more flexible deployment scenarios. In the industry, there is a              

 
 

Page 26 of 55                                                                                     © UNICORE Consortium 2019 



  
 

movement away from the current use of VM and container technologies towards the             

introduction of smaller and more scalable NFVs with automation and orchestration and            

seamless scaling. BNGs deployed in Unikernels would lead to a smaller,faster approach to             

deploying the BNG application in a cloud infrastructure. As shown in figure 3.2.6, deploying              

BNG functionality as lightweight applications in unikernels will overcome the limitations           

outlined in deploying physical infrastructure.  

 

Figure 3.2.6 - BNG Transformation Apps for UNIKERNEL Implementation 

3.2.1.3 UNIKERNEL Requirements  

From a high level perspective, the Unicore unikernel implementations should provide the            

possibility of: 

● Deployment of lightweight, dedicated VMs deployments (per customer or per CPE). 

● Automated fast service instantiation. 

● Scalability capabilities for up to tens of thousands of instances. 

● Per region service provisioning. 

● Tools for monitoring resource allocation, service KPIs and metrics performance. 

The entire Unicore system is expected to be supported on a virtualized environment, VNFs              

with VMs Openstack (with an KVM Hypervisor) based on containerised infrastructure, with            

the possibility of introducing several open tools for orchestration and service instantiation.            

Infrastructure platform deployments will support specific integration of lightweight BNG’s          

VMs. The scenario should be extended with the purpose of supporting the testing and use               

case validation of more than 1000s (v)CPEs, instantiated and connecting to the proper light              

BNG, into an end-to-end scenario. The performance of this proposed system should respect             

customer service KPIs and network KPIs, in terms of bandwidth, delay, provisioning time,             

  
© UNICORE Consortium 2019                                                                                      Page 27 of 55 



  
 

capacity, resource consumption and efficiency. 

Deployment capabilities: Unikernels should support Kubernetes or Openstack orchestration         

and ‘bare-metal’ deployments on X86 Hardware. 

Management plane service, resource and service orchestration OSMv5/ONAP, in         

Openstack/ KVM context. 

User Plane forwarding services: deploy on the top of infrastructure up to 1000 vBNGs, per               

instance an average traffic of 100Mbps, per session flow, 24.000 packets/s. 

Unikernel based services on top: UNIKERNEL should, at a minimum, support running of             

Data Plane Management Kit (DPDK) with performance similar to running on ‘bare-metal’            

x86 architecture. UNIKERNEL should support the latest implementations of the OpenSSL           

toolkit,inclusive of all dependencies and libraries.  

Protocols: Orange’s Unikernel implementation shall support, at minimum the following list           

of network communications and management protocols: 

● BGP; 

● OSPF; 

● ISIS; 

● Static Routing; 

● AAA Server; 

● DHCP 

Scalability: A successful overall implementation of unikernel applications should be          

evaluated when deploying more than 1000s Unicore vBNGs (vCPEs instances), defining           

several service capabilities and characteristics, providing ranges of speed and QoS profiles,            

authentication mechanism and traffic restrictions for user, into an isolated and secured light             

process. 

Security and isolation requirements: The ORANGE BNG use case, as implemented on            

Unikernels, requires advanced security features, at the BNG application level, to minimize            

the exposure to different security attacks (Unicore by design). Hardware and platform            

security level are more relevant for a telco operator and this is achieved through the               

decomposition of a monolithic application into smaller building blocks which can be            

executed in isolated environments.  

 
 

Page 28 of 55                                                                                     © UNICORE Consortium 2019 



  
 

As per the requirements documented in Deliverable 2.1, the unikernels used for ORO’s             

use-cases should have a specialized code base, should not accept system call, should be              

immutable, should provide Address Space Layout Randomization and Stack overflow          

protection. 

3.2.1.4 Orchestration and Management Integration Requirements   

For service instantiation and resource configuration on the deployed infrastructure,          

orchestration tools are mandatory to be used, tools used from the open tool community, such               

as OSMv5 for resources orchestration, ONAP for resources and services orchestration, in a             

virtualized (Openstack based) or containerised (Docker based) scenario. The use case           

implementation is not limited to any orchestration tool and can be integrated to any other               

component, adopting also service orchestration capabilities. The orchestration process is          

intended to be adapted and integrated accordingly into the testbed infrastructure, automation            

and software programmability of the system being seen as a mandatory resource apps block              

and different APIs implementation for control, management and service instantiation, with           

some measurable cost reduction in case of development.   

3.2.1.5 Description of Business Case    

The Unicore unikernels implementation assumes the decomposition of monolithic BNGs into           

a number of unikernels, with one unikernel per customer. The decomposition starts from the              

commercial monolithic BNGs service approach, based on the unikernel BNG provided by            

NEC. The Unicore lightweight BNGs VMs should provide, per customer, at least the same              

performance as the monolithic one. The change is provided through the physical separation of              

client’s application domains, providing the capability and flexibility to provide customer           

specific implementation and resource allocation whilst allowing for optimization and fast           

deployment of the services. 

This implementation should allow Orange to deploy virtualized BNGs for each customer, be             

it B2B or B2C and improve on the current deployment state of performance, power              

efficiency, security and isolation and management. This can, in turn, drive the creation and              

operation of new products and services stemming from the decomposed BNG virtualized in             

UNIKERNELS, as this approach will have better scalability, both horizontal and vertical and             

  
© UNICORE Consortium 2019                                                                                      Page 29 of 55 



  
 

will benefit ORO and its customers from increased flexibility, thus, allowing ORO to derive              

specific services and products based only on the functionality required by each customer. 

Description of Business Model   

Orange delivers communications services: internet, fixed voice and TV for both residential            

and business customers over the fiber optics infrastructure (FTTH) deployed in urban areas             

and gateway and STBs / CAMs installed by Orange inside the customer’s buildings: 

 

Figure 3.2.7 - FTTH/FTTB Delivery Model of Orange Romania 

A complex portfolio Internet services is available, providing both best effort (up to 1 Gbps               

downlink), and guaranteed bandwidth. Based on the service configuration, customers receive           

either a dynamic or static IP address. Customers can connect their devices (desktop PCs,              

laptops, tablets) using either Ethernet or Wi-Fi LAN interfaces. 

Fixed voice services are based on VoIP technology, enabling customers to make calls to and               

receive calls from any destination. New customers are able to port their existing fixed number               

to Orange, or receive a new number based on their address (county). The service is delivered                

using a dedicated voice (FXS) port, where the customer can plug a fixed phone. For business                

customers, the service can also be delivered using IP phones, or a SIP trunk. Additionally,               

Orange uses fixed Internet as an enablement layer for value-added IT services, such as              

SD-WAN, Security, Business Wi-Fi. 

 
 

Page 30 of 55                                                                                     © UNICORE Consortium 2019 



  
 

A per customer unikernel VM is a completely different deployment model. It will enable per               

customer and network monitoring and resource control, improved capabilities and capacity           

for customers and the possible application of several alternate subscription models.  

3.2.2          Wireless 5G vRAN NFV Clusters 

3.2.2.1       Description of the Use-Case  

Accelleran has traditionally specialised in developing software for small cells (base stations)            

for 4G and more recently, 5G mobile networks. Although this software has always been              

architected for independence from hardware, operating system and third party protocol           

stacks, to date commercial releases have always been in the form of embedded software              

running on specialised ODM hardware.  

The overall telecom industry trend is to move away from monolithic software running on              

specialised hardware towards cloud native applications running on COTS or cloud servers            

such as AWS, GCP etc. These new deployment options, apart from bringing improvements in              

computing power, scalability and redundancy also enable new types of services such as Radio              

Access Network (RAN) slicing, improved network manageability, AI driven automation and           

edge computing. 

Many of these NFV and RAN disaggregation concepts, that are foundational to 5G network              

deployments are also applicable in 4G environments.  

Accelleran has taken its existing embedded software and demonstrated that it can be adapted              

to run in virtual computing environments with relative ease, leading to its planned dRAXTM              

product offering. The outline dRAX architecture is shown in figure 3.2.8 The initial dRAXTM              

solution is composed of the following services:  

  

● dRAXTM RAN Intelligent Controller (dRIC)  

● dRAXTM Information Base  

● dRAXTM Data Bus  

● Cell Control Plane  

 

 

All of which can run on a general compute server. 

  
© UNICORE Consortium 2019                                                                                      Page 31 of 55 



  
 

 
Figure 3.2.8 - Outline dRAX Architecture 

Accelleran has identified two Use Cases where the use of unikernels is warranted. The first               

Use Case revolves around the Intelligent RAN Controller (RIC) which is shown in figure              

3.2.8 above. The RIC is responsible for network manageability and can is responsible for              

aspects such as Admission Control, Handover, and Self Organising Networks (dynamic           

network configuration without the need for human intervention). Historically such features           

were implemented using static algorithms which were compiled into the deployed software.            

In an NFV deployment, where software components can be deployed at a much more              

granular level, it becomes possible to deploy these algorithms in a more dynamic manner e.g.               

as standalone applications running in Unikernels. The ability to develop Unikernel based            

standalone network management applications and potentially hot-swap them into a running           

network raises several new possibilities that would not have been possible in a traditional              

monolithic software deployment. For example, in the case of handover, the base software             

could be deployed with a fairly standard handover algorithm. A premium handover algorithm             

could be licenced with, say to focus on overall system load-balancing or average user              

throughput. This algorithm (Unikernel application) could be hot-swapped into a running           

network without the need for a software upgrade or any network outage. Such a deployment               

model also allows for proprietary algorithm development e.g. a network operator could            

decide to implement and deploy a tailored AI based SON or network interference mitigation              

 
 

Page 32 of 55                                                                                     © UNICORE Consortium 2019 



  
 

algorithm and again the Unikernel deployment model allows for such an algorithm to be              

hot-swapped or trialled into an operation network. 

The second Use Case revolves around software scalability. As mentioned above, traditionally            

RAN software was deployed in a monolithic way on ODM hardware. In such a deployment               

scenario, the granularity and dimensioning of individual components is known and can be             

hard-coded and configured in advance e.g. a 4G small cell might support 64 parallel active               

users and the software should be tailored accordingly so as not to exceed hardware              

limitations. As software is virtualised it is no longer reasonable to hard-code such limitations.              

A typical 4G or 5G (or combined) network deployment might consist of one core network, a                

number of base stations and a number of users. Historically, such a network deployment              

would be planned carefully in advance and a poorly planned deployment could lead to              

network congestion on the one hand or deployed but under-utilised (expensive) equipment on             

the other. Modern network deployments are expected to be much more dynamic; It should be               

possible to add new network components on demand and the software components            

controlling these components should also scale dynamically.  

Accelleran has been rearchitecting its software with this type of scalability of deployment in              

mind. Our software needs to be able to handle the dynamic addition (or removal) of Core                

Network connections, base station control software and per user context handling software            

blocks. In this Use Case Accelleran plans to deploy Unikernel based software            

modules/microservices to handle this dynamic scalability.  

3.2.2.2       Description of the Infrastructure 

Figure 3.2.8. shows the 3GPP reference RAN architecture for 5G network deployments. The             

complete architectural description can be found in [5]. Although the figure refers to 5G,              

conceptually this architecture is also applicable to 4G deployments (although in the case of              

4G interface names would be different) 

The key components shown are: 

● 5GC: 5G Core Network 

● gNB-CU: gNB Central Unit 

● gNB-DU: gNB Distributed Unit 

 

  
© UNICORE Consortium 2019                                                                                      Page 33 of 55 



  
 

The gNB-CU and gNB-DU are connected via a logical F1 Interface. Figure 3.2.9 does not               

show the Remote Radio Unit (RRU) which provides the fronthaul to the network. The RRU               

connects to the gNB-DU via a CPRI/eCPRI interface. 

Figure 3.2.9 - 3GPP Reference 5G Network Architecture 

In a typical 4G deployment the CU, DU and RRU functionality would be co-deployed on               

proprietary ODM hardware. In the architecture shown in figure 3.2.9, the RRU and DU and               

CU can can still be co-located or they can be deployed separately e.g. the RRU and DU can                  

be separated by up to 10 kilometers and it is foreseen that the DU and CU can be deployed up                    

to 40 kilometers apart. The 5GC (or EPC in 4G terminology) is typically located separately.               

Accelleran's primary focus is on CU software.  

3.2.2.3       UNIKERNEL Requirements 

The requirements in Unikernels can be split into both functional and non-functional            

requirements. The functional requirements ensure that the behaviour of the software is the             

same when running in a Unikernel as when it is deployed on ODM hardware or in a Docker                  

container. 

Functional requirements: 

● Openssl ● Libc 

 
 

Page 34 of 55                                                                                     © UNICORE Consortium 2019 



  
 

● Libpthread 

● Netconf Client 

● Zlog 

● Python 3  

● NATS 

● Redis client 

 

 
Non-functional requirements: 

● Performance: Performance should be no worse than is achieved when the software            

executes on ODM hardware i.e. no degradation in performance 

● Scalability: The Accelleran CU software can run on standard x86 or ARM based             

processors so it would be anticipated that we could execute Unikernels based on             

either architecture. As such, scalability should really only be limited in terms of the              

number of physical (or virtual) servers that can be deployed. Typically the entities that              

may need to be scaled in a given deployment would be Core network connections (up               

to 6), Cells (up to 50) and UEs (up to 512 per Cell). It is difficult to state without                   

doing some performance analysis, what number for servers would be required to meet             

these scaling requirements. For the purpose of scaling there is no requirement that             

scalable entities are co-located on the same server i.e. if necessary UEs, Cells and              

network connections can be load-balanced across different servers. 

● On demand deployment: Ideally, it will be possible to spin up Unikernels on             

demand i.e. there would be no need to pre-configure a number of Unikernels in              

advance of them being actually required. In reality in a RAN network deployment,             

timing requirements become tougher the closer one gets to the radio interface (RRU).             

In practice, when spinning up new Core Network connections or Cells there can be a               

bit of tolerance in the start up time i.e. some 10s of additional milliseconds will not                

have a significant impact on the system. However, UE connections need to be handled              

in different timescales. When a UE signals that a connection is required then such a               

new connection should be handled quickly e.g. a delay of milliseconds could be             

tolerated but a delay of 10s of milliseconds could not. Again, it would be necessary to                

analyse Unikernel deployment times to determine whether on demand deployments          

per UE are possible or whether a preconfiguration of a pool of UE handling              

Unikernels  would be required. 

  
© UNICORE Consortium 2019                                                                                      Page 35 of 55 



  
 

3.2.2.4       Orchestration and Management Integration Requirements 

In a typical network deployment, Accelleran will not be in a position to dictate or proscribe a                 

particular orchestration or management system. Software will typically be deployed in           

operator networks on operater-owned server hardware. As such, we would need to support             

any industry-mandated orchestration mechanism. Currently, Accelleran are using Kubernetes         

for orchestration 

3.2.2.5       Description of Business Case 

The Accelleran NFV use cases involve the disaggregation of a relatively monolithic software             

block into a number of Unicore unikernels. Two use cases are considered; applications             

interfacing with the RIC and Unikernels specific to aspects of the RAN CU networking. As               

mentioned previously, the overall telecom industry trend is to move away from monolithic             

software running on proprietary hardware to disaggregated software running on COTS           

hardware.  

In reality the current state of the art is still relatively large monolithic software blocks running                

in virtual machines or, in some cases, docker containers orchestrated by Kubernetes. NFV             

through the use of virtual machines is not really a viable option as it does not scale and                  

docker deployments have well-known security issues which are unlikely to find much            

traction in an industry that is very security conscious.  

Unikernels should allow Accelleran to deploy software at a level of granularity that bypasses              

the current state of the art while also addressing industry security concerns.  

3.2.3 EKINOPS NFV 

Ekinops has distinguished two use cases in the context of Unicore project known as the               

SDWAN Controller Key Server as unikernel and the unikernel based vCPE. 

3.2.3.1      Description of the Use-Cases  

The first use case introduces a unikernel Key Server in a Software-Defined WAN (SDWAN)              

infrastructure composed of three layers namely: 

 
 

Page 36 of 55                                                                                     © UNICORE Consortium 2019 



  
 

● Director: A centralized web portal offering multi-access and allowing Service          

Providers (SPs), partners and customers to run and operate an SDWAN network. The             

Director can be managed on its North-Bound Interface (NBI) by a third-party via             

REST-API on one hand. On the other hand, it manages the SDWAN Edge via the               

Controller on its South-Bound Interface (SBI). 

● Controller: Responsible about the Edge devices management (authentication,        

activation, IP config, IPSec key management, and traffic policy distribution). It           

interacts with the Director on its NBI APIs based on Open Netconf. This Controller is               

natively managed by the Director and can also be managed by a third-party             

management system. Regarding its architectural design, the Controller is composed of           

several µ-services, called µ-controllers, each of which is responsible for a specific            

management function (e.g., Route Reflector, Key Server, and Bootstrap Server). Our           

interest will be hence, on the Key Server  µ-controller. 

● SDWAN EDGE: where the SDWAN tunnels are initiated/terminated. Creates and          

terminates secured (encrypted) tunnels over wired or wireless networks (e.g., DSL,           

Fiber, LTE, MPLS). 

 
Figure 3.2.10 - (Simplified) view of the Ekinops’ SDWAN Solution 

  
© UNICORE Consortium 2019                                                                                      Page 37 of 55 



  
 

The second use case that Ekinops is working on is unikernel based vCPE.  

The imminent arrival of 5G will drive changes in communications service provider networks,             

leveraging on Network Function Virtualization (NFV) and Software Defined Networking          

(SDN) technologies. The upcoming 5G ecosystem will address vertical markets to give rise to              

a plethora of novel services with different requirements, such as Ultra-Reliable Low-Latency            

Communication (URLLC), machine Massive Type Communications (mMTC), and enhanced         

Mobile Broadband(eMBB). To efficiently accommodate all these needs, nowadays' networks          

require architectural enhancements. Routers are one element that Ekinops is working on in             

order to provide better performances that meet the KPIs defined by the 5G Infrastructure              

Public Private Partnership (5GPPP) and other SDOs. In this regard, Ekinops has developed             

OneOS6, a virtualized version of their router. Even if this solution is scalable, on-demand              

deployable as VNF, Ekinops needs to push their solution farther to be more competitive.              

Unikernels is the right solution since a unikernel version of OneOS6 will save the cost of                

deployment, decrease the resource consumption, and highly increase the scalability. 

OneOS6 design is composed of three planes; the management plane, the control plane and the               

data plane. In the management plane, we find a conf server that handles Command Line               

Interface (CLI), and Graphical User Interface (GUI). The control plane is composed of             

several daemons for routing, security, and netflow. This plane receives configuration from            

the netconf server via the Transmission Control Protocol (TCP) channel (i.e., socket). The             

communication between the control plane and the data plane is based on a shared memory               

and handled by a standard MultiCore Communications API (MCAPI) library. The data plane             

has several processes, each of them being a Data Plane Development Kit (DPDK) based              

running as legacy Linux threads pinned to an isolated CPU. Figure 3.2.11 depicts the design               

of the OneOS6 architecture.  

 

 
 

Page 38 of 55                                                                                     © UNICORE Consortium 2019 



  
 

 
Figure 3.2.11 - vCPE architecture design 

3.2.3.2      Description of the Infrastructure 

For the SDWAN use case, the infrastructure consists of physical CPEs, a Gateway between              

the Internet and MPLS network, and an SD-VPN controller. The purpose of the use case               

implementation is to include a unikernel key server in the system to establish VPN tunnels               

between CPEs on the Internet and the MPLS network in an automated way. For this purpose                

the VPN Controller manages the encryption keys to be used when new VPN tunnels need to                

be instantiated between CPEs or between CPEs and the Gateway. When a new CPE is added                

to the network it first establishes a secure and authenticated connection to the VPN controller.               

The controller provides a common encryption key to be used for the creation of VPNs. The                

Gateway advertises this routing information with BGP to the rest of the MPLS network. 

 

  
© UNICORE Consortium 2019                                                                                      Page 39 of 55 



  
 

 
Figure 3.2.12 - Ekinops’ SDWAN TestBed Infrastructure  

The aforementioned Key Server is a µ-controller functionality of the SDWAN Controller that             

we want to export as Unikernel. It is responsible for group member authentication and              

handles the distribution and renewal of encryption keys. 

While for the vCPE use case, the deployment platform that will be used is a laboratory-based                

platform. It is composed of two connected physical CPEs. The first CPE hosts two VMs, the                

first one is a Debian distribution VM which represents the OneOS6 control plane, while the               

second VM is a unikernel for the data plane. The second machine is a TRex[6] . TRex is an                   

open source realistic traffic generator, low cost, stateless and stateful generator of traffic             

fuelled by DPDK. TRex is used to measure the maximum sustainable throughput of a Device               

Under Test (DUT) under certain conditions. The DUT here is the OneOS6.  

3.2.3.3      UNIKERNEL Requirements 

Regarding the requirements that Unikernels should satisfy for both the SDWAN and vCPE             

use cases, we have classified them into two categories; the functional requirements and the              

non-functional requirements. The functional requirements represent all the utilities that are           

needed by our use cases in order to have the same behaviour when the Key Server/vCPE is                 

deployed as a container, a traditional VM or as bare metal. These utilities include the libraries                

whether low level or application level ones including the following:  

● Openssl 

● Freeradius-client 

● Libc 

● Libpthread 

 
 

Page 40 of 55                                                                                     © UNICORE Consortium 2019 



  
 

● Sqlclient 

● Lwip 

● DPDK 

● mariadb 

For the non-functional requirements, we are expecting that unikernels will bring better            

performance than in traditional ways wherein the key server/vCPE is deployed as container,             

VM or even in bare metal. Therefore, Unikernels should satisfy a list of requirements that are                

described hereafter. 

● Scalability: Deploying the key server as a unikernel should provide high scalability in             

terms of number of edge devices that can be managed by one key server              

(approximately, 1000 devices), but also in terms of number of key servers that can be               

instantiated on the same physical machine which should be high. In the same way,              

with vCPE as a unikernel, we should be able to route thousands of packets per second,                

but also be able to instantiate a large number of vCPE unikernels on the same physical                

machine. 

● On-demand, transparent deployment: The generated unikernels (for both key         

server and vCPE) should behave the same way as standard VMs. Indeed, these             

unikernels deployment should follow the European Telecommunication Standards        

Institute (ETSI) Network Function Virtualization (NFV) principles, this is to reuse           

the NFV Management and Orchestration (MANO) framework. Hence the unikernels          

should be deployed using orchestrators (such as OSM, Cloudify, and ONAP), over a             

virtualized platform using a Virtual Infrastructure Manager (e.g., Openstack,         

OpenNebula, KVM, and Kubernetes).  

● Low SER: As the Unikernel follows the NFV principals, both the key server             

unikernel and vCPE unikernel Service Creation Time (SER) should be very short (in             

term of seconds). This time includes the deployment of the unikernels and their boot.              

This deployment should also support the scale-in and the scale-out with various            

flavours in a very short time. 

● Low resource consumption: Using unikernels rather than VMs should bring          

important gain in terms of resource consumption (CPU, RAM, and Energy). Indeed,            

as unikernels are lightweight VMs, we are expecting a very low consumption in             

comparison with VMs. This should bring gain with a factor of at least x10.  

  
© UNICORE Consortium 2019                                                                                      Page 41 of 55 



  
 

● High performance: Using unikernels should not affect the performances of both key            

server and vCPE. Indeed, because the unikernels are lightweight VMs with less            

libraries and utilities than standard Linux VM, this should not impact the performance             

of the key server/vCPE. On the contrary, it should bring better performance in regards              

to the number of unikernels that can be instantiated on the same physical machine. 

3.2.3.4      Orchestration and Management Integration Requirements 

In what concerns the orchestration and management of these use cases, Ekinops, at the time               

being, has not a constrained platform with a specific orchestrator or infrastructure manager             

for these use cases. However, this may change in the future by creating a trial platform,                

which should fellow the ETSI MANO framework. 

3.2.3.5      Description of Business Case 

Introducing unikernel addresses the need for more efficiency and performance which are            

becoming strong market requirements since SDWAN components are virtualized and their           

resources requirements are not negligible. 

SDWAN solutions leverage recent developments in networking technology to provide          

enterprise customers with a more flexible approach for building and operating WAN            

networks. IT departments of enterprises are increasingly challenged to provide more agile            

network services supporting the enterprise in their digital transformation journey. Traditional           

Communication Service Providers (CSPs) services do not offer the flexibility, optimization           

and time to market required to meet these challenges. Using a combination of VPN              

technologies, Hybrid WAN, Application Awareness and Centralized Orchestration, SDWAN         

solutions provide enterprises the means to become more independent from existing CSPs and             

build their own private overlay network on top of existing Multi-Protocol Label Switching             

(MPLS) and Internet services in a more flexible and optimized way. The Centralized             

Orchestration of the SDWAN network also puts the enterprise back in control over large parts               

of its network and on-the-fly re-allocation of network resources provides enterprises the            

needed flexibility to cope with the dynamic nature of their businesses. 

Thanks to its lower resource requirements/cost, unikernel SDWAN and vCPE propositions           

will be more appealing for small and medium sized companies interested to operate their              

WAN in a more agile and optimized way. 

 
 

Page 42 of 55                                                                                     © UNICORE Consortium 2019 



  
 

3.3 Home Automation and IoT 

3.3.1 Description of the Use-Case  

The Home Automation use case is based on Symphony, the Smart Home and Smart Building               

Management platform by Nextworks. It integrates home/building control functionalities,         

devices and heterogeneous sensing and actuation subsystems, allowing, among others, the           

creation of scenarios for the control of lighting, doors, climate, etc. As previously described              

in deliverable D2.1 nad D2.3, Symphony can communicate with a large number of             

commercial automation controls, and it integrates different field protocols under a           

coordinated, unied management middleware . 

The migration of some functionalities to unikernels might be an interesting evolutionary step             

for the Symphony platform in the direction of optimization of the split of its business logics                

into unitary services and lightweight image footprints. These expected benefits can ease more             

dynamic and faster upgrades, as well as dynamic conguration of services. 

As described in deliverables D2.1 and D2.3 and given the complexity of the Symphony IoT               

platform which spans from the dometic field bus controls to Human Machine Interaction, the              

functions which can be more reasonable to port to unikernel include 

● somedomotic or automation protocol gateways (e.g. MQTT, Zigbee, Z-Wave,         

Bluetooth LE); 

● functions for data storage; 

● specic network functions (e.g. local routers for NAT/Firewall); 

● specic media service gateways and/or voice/video communication handlers which         

are targeted to be hosted on constrained devices (e.g. Raspberry Pi, micro-PC, etc.). 

  
© UNICORE Consortium 2019                                                                                      Page 43 of 55 



  
 

 

Figure 3.3.1 - Symphony Building Blocks 

The deployment and validation strategy of Symphony functions with UNICORE will follow            

the three stages  introduced in deliverable D2.1 and D2.3: 

● Stage 1. Functional validation. Core focus of this stage is the validation of the              

krafting aspects and the verification that the resulting unikernel implements all the            

functions the origin Symphony element can offer.  

● Stage 2. Performance evaluation. This phase will consider performance aspect in           

order to evaluate if the implementation via unikernel can maintain or even exceed             

some specific performance indicators e.g. in terms of processing (speed, number of            

operations), throughputs at network interfaces, time to boot, etc. 

● Stage 3, Automation and Upgrades. This nal stage of experimentation will evaluate            

the feasibility and potential benefits of an automatic deployment of the Symphony            

Building Management System (or parts of it) through distributed controller nodes in            

which unikernels are generated at run-time, taking into consideration characteristics,          

constraints and location of the available hardware nodes. 

 
 

Page 44 of 55                                                                                     © UNICORE Consortium 2019 



  
 

Figure 3.3.2 - Testing stages 

The current plan for porting of Symphony IoT functions includes : 

1. Symphony Event Reactor (ER); 

2. Symphony MQTT driver (MQTT); 

3. Symphony environmental sensors driver (F1); 

4. Symphony lightning driver (F2);  

5. Symphony energy monitor (F3); 

6. Network firewall (F3); 

Following the three-scenario approach described above. The process has been divided into            

different phases, from the selection of the component to be ported till its final integration and                

testing, in order to draw a time plan according to the project deadlines. 

In the first stage, the pre-start, we have analysed the candidate services and all of their                

technical requirements. This includes taking into account all of the dependencies that            

Symphony comes with. It might require modules (e.g. CORBA), languages (e.g. Go),            

libraries that could not be supported by Unikraft at the time we write this deliverable. This                

implies that either adaption will be needed or even some components will have to be dropped,                

due to the impossibility of the migration. 

  
© UNICORE Consortium 2019                                                                                      Page 45 of 55 



  
 

Figure 3.3.3 - Smart Home UNICORE porting  time plan 

For the deployment phase 2, which targets the release of D5.2 in M20, we plan to complete                 

the work and validation of the the Event Reactor function and to also complete the MQTT                

driver. For the deployment phase 3, which will be completed by M36 with deliverable D5.3,               

we will complete the rest of the functions listed above. 

3.3.2 Description of the Infrastructure 

The testing infrastructure for this use case will be the Nextworks’ premises in Pisa (Italy).               

Nextworks offices are placed in a (almost) completely automated building, equipped with            

many different IoT devices, all controlled by Symphony platform. The infrastructure made            

available to the project use case will be selected from this actual installation and it will                

depend on the technical requirements of the demonstrated scenarios. 

The following pictures depict a map of some installations in the building: 

 

Figure 3.3.4 - Ground floor installation layout 

 
 

Page 46 of 55                                                                                     © UNICORE Consortium 2019 



  
 

 

Figure 3.3.5 – First Floor Installation Layout 

 

Figure 3.3.6 – External Area Installation Layout 

The testing environment includes up to 50 types of sensors and actuators, ranging from              

Comfort Living sensors (e.g. Lighting switches/dimmers, curtains / blinds, thermostats,          

electricity meters, etc.), to Security (e.g. motion detection sensor, smart floor sensor readings,             

room/building accesses, etc.), Environment (e.g. indoor/outdoor temperature, pollution, etc.)         

and so forth..After an initial phase of selection of the IoT devices to be integrated, the related                 

control modules will be ported into unikernels via UNIKRAFT and then deployed in the              

Symphony infrastructure to run integrated with the rest of the system. The targeted will run in                

both servers with limited computing power, such as Raspberry PIs, APUs, etc. and in              

virtualization infrastructures in the form of very lightweight virtual machines. 

  
© UNICORE Consortium 2019                                                                                      Page 47 of 55 



  
 

3.3.3 UNIKERNEL Requirements 

The initial selection of Symphony functions to be possibly “unikernelized” has allowed to             

identify and confirm the requirements towards unikernels initially identified in deliverable           

D2.1 and D2.3. 

In fact, during the first stage (Phase-0 as per Section 2) we have analysed the candidate                

services and all of their technical requirements. This includes taking into account all of the               

dependencies that Symphony comes with. It might require modules (e.g. CORBA), languages            

(e.g. Go), libraries that could not be supported by Unikraft at the time we write this                

deliverable. This implies that either adaption will be needed or even some components will              

have to be dropped, due to the impossibility of the migration. The first component which has                

been evaluated for porting to unikernel is the Symphony Event Reactor (see description in              

deliverable D2.1). It triggers actions and alarms (e.g. act on notification, act on explicit              

sensors’ values, etc.), logs and manages alarms lifecycle, through two submodules: 

● Event Manager – written in Python 

● Alarm Manager – written in C++ 

It also uses Blockly [7], an open source client-side JavaScript library for creating block-based              

visual programming languages (VPLs) and editors, as a GUI for connecting events and             

reactions to events. 

  

Figure 3.3.7 - Human/Machine Interaction User Interfaces 

 
 

Page 48 of 55                                                                                     © UNICORE Consortium 2019 



  
 

Three reasons have led us towards Event Reactor (and in particular to Event Manager) as the                

first module to work with unikernels: 

● It is implemented in Python 

● It has REST API in addition to CORBA interfaces 

● It has reduced number of dependencies/interfaces with other modules 

Nevertheless, not all the dependencies are satisfied: 

● Tornado and RabbitMQ (pika library) are supported  

● Python2.7 is not supported, so the component had been ported to Python3 

● OmniORB (CORBA python library) was not supported and it had removed 

● Additional 2nd-level dependencies are ongoing to be investigated 

Concerning more specific use-case related functionalities, we expect the UNICORE toolkit           

and krafted unikernels to: 

● implement the same functionality across the current interfaces (at least string-based           

TCP protocol interfaces); 

● support the same number of messages (e.g. AMQP, MQTT) with respect to standard             

containers or VM solutions; 

● support the same number of network ows in network functions (e.g. NAT            

translations, rewall rules, etc.) and packets processed per second in similar           

conditions of assigned resources; 

● support automated packaging of Unikernel functions with variable conguration         

proles, to allow automatic on-demand spawning of functions for service scaling or            

event-based processing; 

● lower resources consumption for the Symphony middleware to allow it to t into             

small-scale computing elements (e.g. domestic NAS); 

● lower time for delivering software upgrades in eld installations to reduced footprint            

images (unikernel-based) and automated build procedures. 

  
© UNICORE Consortium 2019                                                                                      Page 49 of 55 



  
 

3.3.4 Orchestration and Management Integration Requirements 

One of the intentions is to deploy unikernel-based services in containers or light VMs to be                

orchestrated and managed via ProxMox (https://www.proxmox.com) or Kubernetes        

(https://kubernetes.io). The target reference processor architecture for all the selected          

functions is x86.  

This represents the main requirement towards orchestration from this use case. 

3.3.5 Description of Business Case 

As described in deliverable D2.3, the idea behind this use case is to create a “light” version of                  

the Symphony platform, that could be offered to customers with constrained hardware to             

support a subset of basic automation functionalities. 

As previously described, Symphony integrates a large number of protocols and technologies,            

providing different services for domotics and entertainment on the top of these. The process              

of migrating to Unikernels will foster the decomposition of the platform in a set of (partially)                

independent software components. These will be then re-assembled together basing on the            

user needs, in order to provide quick and lightweight solutions, in all the cases where the full                 

set of platform features is not strictly required. 

This new flexible and modular Symphony version can address all the small customers that              

might require the implementation of specific functions tailored on their scenarios. 

3.4 Smart Contracts  

Smart contracts are snippets of code that execute in a distributed environment with             

potentially malicious parties. Every deployment node in the distributed environment (or just         

some nodes, in environments that use sharding) runs a given smart contract every time some               

user provides input for that particular contract. There are two actors that could be malicious:               

either the deployment nodes that run the smart contract or the users creating the smart               

contract. Because the nodes can be malicious, the user cannot trust any single node to               

correctly run the smart contract. The nodes themselves do not trust each other either. Thus,               

the user and nodes only trusts a piece of information (input, output, smart contract code)               

 
 

Page 50 of 55                                                                                     © UNICORE Consortium 2019 

https://kubernetes.io/


  
 

when a majority of nodes agree with that particular information – we say the nodes reach                

consensus on that particular information. Because users can be malicious, we need to protect              

the nodes from users who provide malicious code or different code versions to different              

nodes for the same smart contract. 

Nodes store in the blockchain information that a majority reached consensus on. A             

blockchain is an append-only data structure containing an ordered collection of blocks. This             

information stored is, for example, the smart contracts themselves that the users provide, the              

inputs that the users provide and the outputs obtained after running the smart contract on               

some inputs. Typically the deployment nodes store the blockchain, but it could be any other               

set of nodes. 

3.4.1 Description of the Use-Case  

The DEDIS lab at EPFL has developed through the years a blockchain framework[8] that              

implements efficient deterministic consensus protocols[9], such as ByzCoin[10] and         

Omniledger[11], and multiple tools that make use of the blockchain, such as e-voting or a               

private storage. One of these tools is the support for smart contracts execution. 

Every deployment node in the distributed environment, the so-called conode in the DEDIS             

framework named Cothority (Collective Authority), runs a given smart contract every time            

some user provides input for that particular contract. In our framework There are five steps in                

running the smart contract: (1) Obtaining the smart contract; (2) Obtaining the input for an               

execution of the smart contract (also called transaction); (3) Running the smart contract on              

that input; (4) Agreeing on the result; (5) Persisting the result of the execution, which can                

then be retrieved by the user.  

Currently the smart contracts written by the lab are bundled within the conode binary, which               

allows a very efficient and controlled execution. This is important as many executions of a               

smart contract with the same inputs must produce the same output, otherwise the consensus              

between participants cannot be reached and, thus, the transactions are not successfully            

executed. 

In order to better open the framework to industrial partners, DEDIS aims to extend the               

support of smart contracts with the possibility of executing arbitrary code written in generic              

languages. This last point is important as we want developers to be able to use existing                

  
© UNICORE Consortium 2019                                                                                      Page 51 of 55 



  
 

libraries. By using Unikernels, the framework can provide support for generic smart contracts             

like Ethereum does, but with the difference that the developer is not limited by the features of                 

the language and can efficiently and conveniently write code to be executed on the              

blockchain by reusing existing libraries. For example, zero knowledge proofs are not possible             

in Ethereum because of language and gas limitations, but would be possible in our              

framework. 

3.4.2 Description of the Infrastructure 

The Cothority framework is meant to be deployed on multiple servers that will participate in               

the network. One important aspect of this network is the heterogeneity of the architectures of               

the different conodes. Because there is no central party controlling the conodes, each conode              

independently decides the operating system running on the conode, e.g., a standard x86_64             

based operating system or a Raspberry PI using an ARM64 architecture. Our simulation will              

therefore run on a Kubernetes cluster built from a mix of different architectures. 

3.4.3 UNIKERNEL Requirements 

Currently, there is no possibility to provide an environment where external developers can             

write their own smart contracts to the Cothority framework without using a solution similar to               

Ethereum which is using a specifically defined language and a virtual machine. The very first               

important requirement for unikernels is to support the execution of a generic piece of code in                

a deterministic manner so that multiple executions with the same input will produce the same               

output. 

The system also has to process multiple transactions in a very short amount of time so that                 

the throughput of the overall blockchain is sufficiently high. This means that unikernels will              

be launched beforehands and used as a pool of executors. It should be then possible to run                 

arbitrary programs one after the other without leaking any information from the previous             

execution. 

Finally, the conode process must be able to communicate with the pool of executors to send                

the program and the input, and then get the output of the execution. It should be as fast as                   

possible as it is necessary to make a smart contract execution as small as possible to increase                 

the global throughput. 

 
 

Page 52 of 55                                                                                     © UNICORE Consortium 2019 



  
 

3.4.4 Orchestration and Management Integration Requirements 

Each conode participating in the network must be managed by different parties to ensure              

sufficient diversity and thus to prevent a group of attackers to have a high enough threshold.                

This means that a typical deployment of a Cothority does not assume any availability and it is                 

necessary to provide enough solution to administrators so that they can support unikernels.             

UNICORE is already supporting bare-metal, KVM and Xen which is sufficient for a starter. 

3.4.5 Description of Business Case 

As mentioned previously, the DEDIS lab has projects in common with industrial partners.             

The UNICORE project can improve those contributions by improving the framework           

provided to the industrial partners so that they can extend the functionalities with their own               

smart contracts. This would improve the situation as the current workflow requires partners to              

prepare requirements and the DEDIS lab to write the smart contracts to fulfill the              

requirements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
© UNICORE Consortium 2019                                                                                      Page 53 of 55 



  
 

4. Conclusions 
In this deliverable we presented a detailed report on the deployment targets of UNICORE and               

all use-cases. The aim of Work Package 5 is to validate the practicality of UNICORE through                

the six use-cases: serverless computing, vBNG, NFV, vRAN, Home Automation and IoT and             

finally smart contracts. Towards this goal we started from information in D2.1, describing the              

use-cases, the infrastructure and the requirements for UNIKERNELS.  

For most of the use-cases, the deployment of UNIKERNELS requires that various software             

components, libraries and codes be ported to UNIKERNELS and that actual logical and             

physical components of the underlying technology in each use-case be decomposed in            

UNIKERNELS. Validating the requirements for a UNIKERNEL means that the architecture           

for the deployment of the use-case takes into consideration the specifications and limitations             

of the considered UNIKERNEL and the orchestration and management frameworks to be            

used. 

Further on, having consolidated on the business cases for each deployment, we can move              

forward through the timeline of WP5 towards an initial deployment followed by feeding back              

the findings from this activity to an ongoing optimization process that will feed forward to               

the final deployment and validation. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Page 54 of 55                                                                                     © UNICORE Consortium 2019 



  
 

5. References 
 

[1] ”Continuous integration vs. continuous delivery vs. continuous deployment“ -         
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-v
s-delivery-vs-deployment  

[2] “IRTA Pubpro - Open Digital Archive” - http://repositori.irta.cat/ 

[3] “UIC Barcelona - Open Access Archive” - http://http://repositori.uic.es/ 

[4] “DSpace” - https://duraspace.org/dspace/ 

[5] "5G; NG-RAN; Architecture description" - 
https://www.etsi.org/deliver/etsi_ts/138400_138499/138401/15.07.00_60/ts_13840
1v150700p.pdf  

[6] “TRex - Realistic Traffic Generator” - https://trex-tgn.cisco.com/ 

[7] “Blockly-A JavaScript library for building visual programming editors” -         
https://developers.google.com/blockly 

[8] “Scalable collective authority” - https://github.com/dedis/cothority 

[9] K.Nikitin et. all - “CHAINIAC: Proactive Software-Update Transparency via         
Collectively Signed Skipchains and Verified Builds”, August, 2017, Vancouver,         
BC, Canada 

[10] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi,        
Linus Gasser, and Bryan Ford - “Enhancing Bitcoin Security and Performance           
with Strong Consistency via Collective Signing”, August, 2016, Austin, TX, USA 

[11] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa         
Syta, Bryan Ford - “OmniLedger: A Secure, Scale-Out, Decentralized Ledger via           
Sharding”, 2017 
 

 

  
© UNICORE Consortium 2019                                                                                      Page 55 of 55 


